Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2379: 253-264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35188666

RESUMO

Mitochondria play a key role in cellular metabolism. Analyses of the genome, the proteome, metabolic, physiological, and biochemical functions of mitochondria frequently require the isolation of intact and functional mitochondria from various plant tissues with sufficient yield. For this purpose, we generated a transgenic Arabidopsis thaliana (Arabidopsis) line which presents a triple hemagglutinin tag on the surface of the outer mitochondrial membrane. The affinity tag enables immunocapture of the organelles in a single step. This chapter gives detailed instructions on how to generate transgenic Arabidopsis lines harboring a ubiquitously expressed 3xHA-sGFP-TOM5 mitochondrial fusion protein that is targeted to the outer mitochondrial membrane and enables purification of the organelles in a single step.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Epitopos/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo
2.
Trends Plant Sci ; 27(5): 488-501, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34848143

RESUMO

Subcellular compartmentalization confers evolutionary advantage to eukaryotic cells but entails the need for efficient interorganelle communication. Malate functions as redox carrier and metabolic intermediate. It can be shuttled across membranes through translocators. The interconversion of malate and oxaloacetate mediated by malate dehydrogenases requires oxidation/reduction of NAD(P)H/NAD(P)+; therefore, malate trafficking serves to transport reducing equivalents and this is termed the 'malate shuttle'. Although the term 'malate shuttle' was coined more than 50 years ago, novel functions are still emerging. This review highlights recent findings on the functions of malate shuttles in photorespiration, fatty acid ß-oxidation, interorganelle signaling and its putative role in CO2-concentrating mechanisms. We compare and contrast knowledge in plants and algae, thereby providing an evolutionary perspective on redox trafficking in photosynthetic eukaryotes.


Assuntos
Malatos , NAD , Malatos/metabolismo , NAD/metabolismo , Oxirredução , Fotossíntese
3.
Methods Mol Biol ; 2363: 25-37, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34545483

RESUMO

Mitochondria are highly dynamic organelles that are vital for eukaryotic cellular metabolism. Mitochondria account only for a small fraction of the total cell volume. As such, intact organelle isolation is a basic requirement to study mitochondrial biochemistry and physiology. However, established isolation procedures are tedious, and require a substantial amount of tissue material to start with. We addressed this matter and developed a single step purification for Arabidopsis thaliana (Arabidopsis) mitochondria. Ubiquitous expression of an 3xHA-sGFP-TOM5 fusion protein in the outer mitochondrial membrane allows affinity purification by immunocapture in a single step. We here provide a detailed step-by-step protocol for rapid immunocapture of intact and physiologically active mitochondria from Arabidopsis plants.


Assuntos
Mitocôndrias , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membranas Mitocondriais , Organelas/metabolismo , Plantas
4.
Plants (Basel) ; 10(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925393

RESUMO

Photorespiration (PR) is a metabolic repair pathway that acts in oxygenic photosynthetic organisms to degrade a toxic product of oxygen fixation generated by the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase. Within the metabolic pathway, energy is consumed and carbon dioxide released. Consequently, PR is seen as a wasteful process making it a promising target for engineering to enhance plant productivity. Transport and channel proteins connect the organelles accomplishing the PR pathway-chloroplast, peroxisome, and mitochondrion-and thus enable efficient flux of PR metabolites. Although the pathway and the enzymes catalyzing the biochemical reactions have been the focus of research for the last several decades, the knowledge about transport proteins involved in PR is still limited. This review presents a timely state of knowledge with regard to metabolite channeling in PR and the participating proteins. The significance of transporters for implementation of synthetic bypasses to PR is highlighted. As an excursion, the physiological contribution of transport proteins that are involved in C4 metabolism is discussed.

5.
Plant Physiol ; 182(2): 692-706, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31818904

RESUMO

Photosynthesis in plant cells would not be possible without the supportive role of mitochondria. However, isolating mitochondria from plant cells for physiological and biochemical analyses is a lengthy and tedious process. Established isolation protocols require multiple centrifugation steps and substantial amounts of starting material. To overcome these limitations, we tagged mitochondria in Arabidopsis (Arabidopsis thaliana) with a triple hemagglutinin tag for rapid purification via a single affinity-purification step. This protocol yields a substantial quantity of highly pure mitochondria from 1 g of Arabidopsis seedlings. The purified mitochondria were suitable for enzyme activity analyses and yielded sufficient amounts of proteins for deep proteomic profiling. We applied this method for the proteomic analysis of the Arabidopsis bou-2 mutant deficient in the mitochondrial Glu transporter À BOUT DE SOUFFLE (BOU) and identified 27 differentially expressed mitochondrial proteins compared with tagged Col-0 controls. Our work sets the stage for the development of advanced mitochondria isolation protocols for distinct cell types.


Assuntos
Arabidopsis/metabolismo , Cromatografia de Afinidade/métodos , Mitocôndrias , Plântula/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glutamina/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Proteínas de Membrana Transportadoras/genética , Microscopia Confocal , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Fragmentos de Peptídeos/genética , Plantas Geneticamente Modificadas , Proteoma/genética , Proteoma/metabolismo , Proteômica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Front Plant Sci ; 9: 1709, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30559749

RESUMO

This study was aimed at elucidating the significance of photorespiratory serine (Ser) production for cysteine (Cys) biosynthesis. For this purpose, sulfur (S) metabolism and its crosstalk with nitrogen (N) and carbon (C) metabolism were analyzed in wildtype Arabidopsis and its photorespiratory bou-2 mutant with impaired glycine decarboxylase (GDC) activity. Foliar glycine and Ser contents were enhanced in the mutant at day and night. The high Ser levels in the mutant cannot be explained by transcript abundances of genes of the photorespiratory pathway or two alternative pathways of Ser biosynthesis. Despite enhanced foliar Ser, reduced GDC activity mediated a decline in sulfur flux into major sulfur pools in the mutant, as a result of deregulation of genes of sulfur reduction and assimilation. Still, foliar Cys and glutathione contents in the mutant were enhanced. The use of Cys for methionine and glucosinolates synthesis was reduced in the mutant. Reduced GDC activity in the mutant downregulated Calvin Cycle and nitrogen assimilation genes, upregulated key enzymes of glycolysis and the tricarboxylic acid (TCA) pathway and modified accumulation of sugars and TCA intermediates. Thus, photorespiratory Ser production can be replaced by other metabolic Ser sources, but this replacement deregulates the cross-talk between S, N, and C metabolism.

7.
Methods Mol Biol ; 1653: 83-96, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28822127

RESUMO

The photorespiratory cycle is distributed over four cellular compartments, the chloroplast, peroxisomes, cytoplasm, and mitochondria. Shuttling of photorespiratory intermediates between these compartments is essential to maintain the function of photorespiration. Specific transport proteins mediate the transport across biological membranes and represent important components of the cellular metabolism. Although significant progress was made in the last years on identifying and characterizing new transport proteins, the overall picture of intracellular metabolite transporters is still rather incomplete. The photorespiratory cycle requires at least 25 transmembrane transport steps; however to date only plastidic glycolate/glycerate transporter and the accessory 2-oxoglutarate/malate and glutamate/malate transporters as well as the mitochondrial transporter BOU1 have been identified. The characterization of transport proteins and defining their substrates and kinetics are still major challenges.Here we present a detailed set of protocols for the in vitro characterization of transport proteins. We provide protocols for the isolation of recombinant transport protein expressed in E. coli or Saccharomyces cerevisiae and the extraction of total leaf membrane protein for in vitro analysis of transporter proteins. Further we explain the process of reconstituting transport proteins in artificial lipid vesicles and elucidate the details of transport assays.


Assuntos
Arabidopsis/metabolismo , Bioensaio , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Arabidopsis/química , Arabidopsis/genética , Membrana Celular/química , Cloroplastos/química , Cloroplastos/genética , Cromatografia em Gel/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Oryza/química , Oryza/genética , Oryza/metabolismo , Consumo de Oxigênio/fisiologia , /genética , Fosfatidilcolinas/química , Fotossíntese/fisiologia , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteolipídeos/química , Proteolipídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triticum/química , Triticum/genética , Triticum/metabolismo
8.
Plant Physiol ; 172(3): 1578-1595, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27688621

RESUMO

GENOMES UNCOUPLED 4 (GUN4) is a positive regulator of light-dependent chlorophyll biosynthesis. GUN4 activates Mg chelatase (MgCh) that catalyzes the insertion of an Mg2+ ion into protoporphyrin IX. We show that Arabidopsis (Arabidopsis thaliana) GUN4 is phosphorylated at Ser 264 (S264), the penultimate amino acid residue at the C terminus. While GUN4 is preferentially phosphorylated in darkness, phosphorylation is reduced upon accumulation of Mg porphyrins. Expression of a phosphomimicking GUN4(S264D) results in an incomplete complementation of the white gun4-2 null mutant and a chlorotic phenotype comparable to gun4 knockdown mutants. Phosphorylated GUN4 has a reduced stimulatory effect on MgCh in vitro and in vivo but retains its protein stability and tetrapyrrole binding capacity. Analysis of GUN4 found in oxygenic photosynthetic organisms reveals the evolution of a C-terminal extension, which harbors the phosphorylation site of GUN4 expressed in angiosperms. Homologs of GUN4 from Synechocystis and Chlamydomonas lack the conserved phosphorylation site found in a C-terminal extension of angiosperm GUN4. Biochemical studies proved the importance of the C-terminal extension for MgCh stimulation and inactivation of GUN4 by phosphorylation in angiosperms. An additional mechanism regulating MgCh activity is proposed. In conjunction with the dark repression of 5-aminolevulinic acid synthesis, GUN4 phosphorylation minimizes the flow of intermediates into the Mg branch of the tetrapyrrole metabolic pathway for chlorophyll biosynthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Liases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Western Blotting , Escuridão , Ensaios Enzimáticos , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Teste de Complementação Genética , Genótipo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Biológicos , Mutação/genética , Oxirredução , Fenótipo , Fosforilação , Fosfosserina/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Porfirinas/metabolismo , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
9.
New Phytol ; 203(2): 495-507, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24697163

RESUMO

Glucan, water dikinase (GWD) is a key enzyme of starch metabolism but the physico-chemical properties of starches isolated from GWD-deficient plants and their implications for starch metabolism have so far not been described. Transgenic Arabidopsis thaliana plants with reduced or no GWD activity were used to investigate the properties of starch granules. In addition, using various in vitro assays, the action of recombinant GWD, ß-amylase, isoamylase and starch synthase 1 on the surface of native starch granules was analysed. The internal structure of granules isolated from GWD mutant plants is unaffected, as thermal stability, allomorph, chain length distribution and density of starch granules were similar to wild-type. However, short glucan chain residues located at the granule surface dominate in starches of transgenic plants and impede GWD activity. A similarly reduced rate of phosphorylation by GWD was also observed in potato tuber starch fractions that differ in the proportion of accessible glucan chain residues at the granule surface. A model is proposed to explain the characteristic morphology of starch granules observed in GWD transgenic plants. The model postulates that the occupancy rate of single glucan chains at the granule surface limits accessibility to starch-related enzymes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Fosfotransferases (Aceptores Pareados)/metabolismo , Amido/química , Amido/metabolismo , Proteínas de Arabidopsis/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Isoamilase/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutação , Fosforilação , Fosfotransferases (Aceptores Pareados)/genética , Plantas Geneticamente Modificadas , Solanum tuberosum , Amido/genética , Amido/ultraestrutura , Propriedades de Superfície , beta-Amilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...